Ultrasound for slow-speed bearings

Ultrasound for slow-speed bearings

Thomas J. Murphy C.Eng. CRL Corporate Training Manager SDT Ultrasound Solutions

What is Ultrasound?

- High frequency sound beyond human hearing
- Working in the range 36-40kHz
- Sound travels through gases, liquids and solids

Why Ultrasound?

- Detects three important parameters:
 - Friction
 - Impacting
 - Turbulence

 When you perform your FMEAs how many times do you find one of these three?

Is slow-speed special?

- From an ultrasound perspective? Not really
 - Friction
 - Impacting
- From a vibration perspective? Absolutely yes!
 - Measurement is much more complex
 - More care required
 - More time required

Four stages of failure

- Vibration training always talks about four stages of failure
 - Friction
 - High frequency random impacts
 - Bearing defect frequencies
 - A mess, just a lot of noise, looseness
- Nothing in that training limits this process by a minimum speed

Reliance on the FFT

- Fourier's mathematics should only be applied to continuous and repeating signals
 - Early stage defects are neither
- The FFT process creates noise
- The accelerometer creates noise

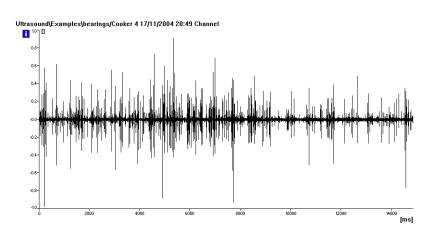
Reliance on post-process

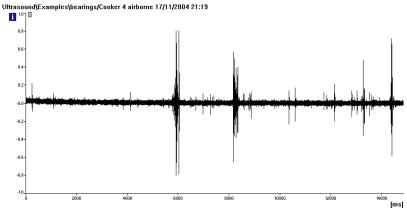
- Few post-processing methods like peak view, enveloping, etc. are live
- Ultrasound is live
- Slow bearings need grease
- Slow bearings have intermittent failure

Noise problems

- Sensor noise
 - A typical accelerometer is100mV/g with a 20µV noise floor.
 - At 3000 rpm, 1mm/s is 0.03grms or 3mV
 - At 300 rpm, 1mm/s is 0.003grms or 300μV
 - At 30 rpm, 1mm/s is 0.0003grms or 30µV
- The noise floor of some ultrasound devices is as low as ¹/₃μV

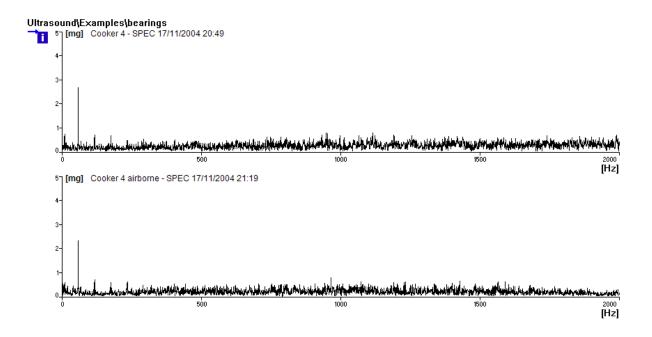
Noise problems


- FFT process itself generates noise
- To reduce noise you need to have lots of lines and full averaging
- This all takes time
 - 10Hz and 3200 lines is a 320 second time block
 - Four averages would take 21m20s to acquire
 - it could be a long day!



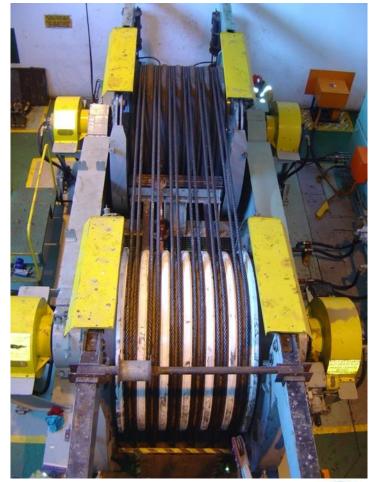
Time vs. Frequency

Consider these two time signals:

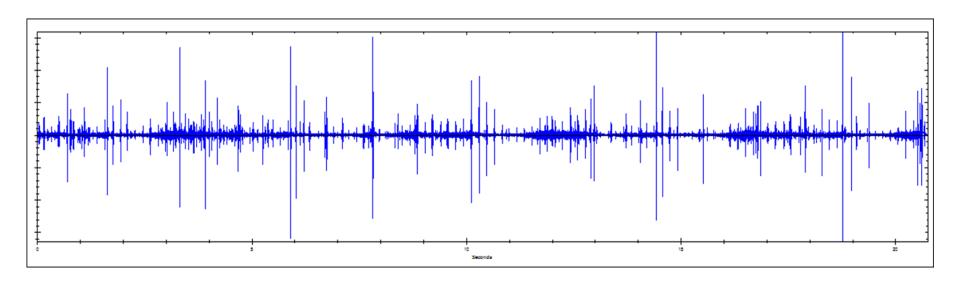


Time vs. Frequency

So why are their spectra almost identical?



Hoist bearing


- 21-minute
 measurement in
 vibration
- Only 30 seconds of travel from start to stop

Hoist bearing

Hoist bearing

How is this possible?

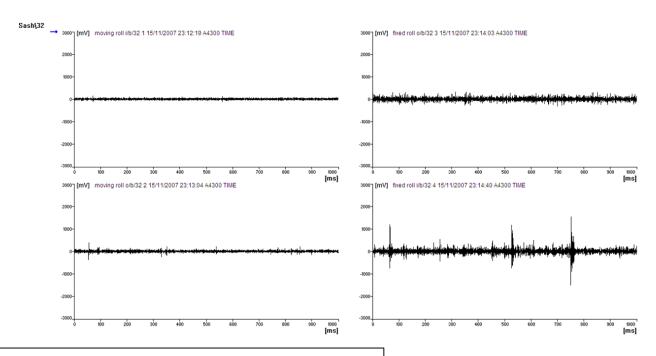
• 14rpm

BPFI at 2.88Hz/173cpm

How can I find this working at 36-40kHz?

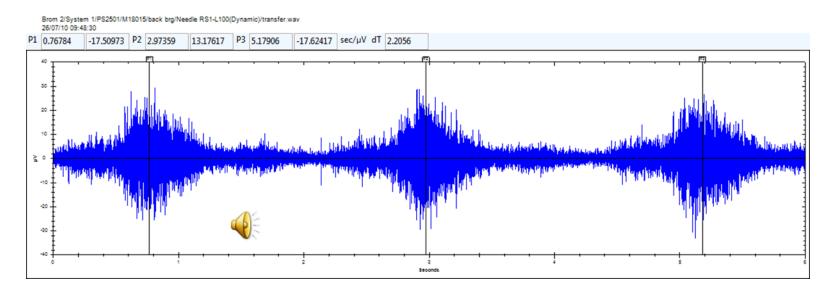
How slow can you go?

Don't really care



Nip rolls at 14rpm

- 4 bearings @ 21mins each = long day!!!
- 4 bearings @ 20sec each = manageable



Maintenance or process?

- Rub on a screw at 30rpm
- This isn't a bearing problem

Conclusions

- Ultrasound can offer significant assistance to anyone trying to take care of slowmoving assets
- Ultrasound can still be used for lubrication
- With the right hardware and software,
 Ultrasound can be used for diagnostics

